

# Outlast® Temperatur Regulierung: FEELING JUST RIGHT





Willkommen in der Welt von Outlast!



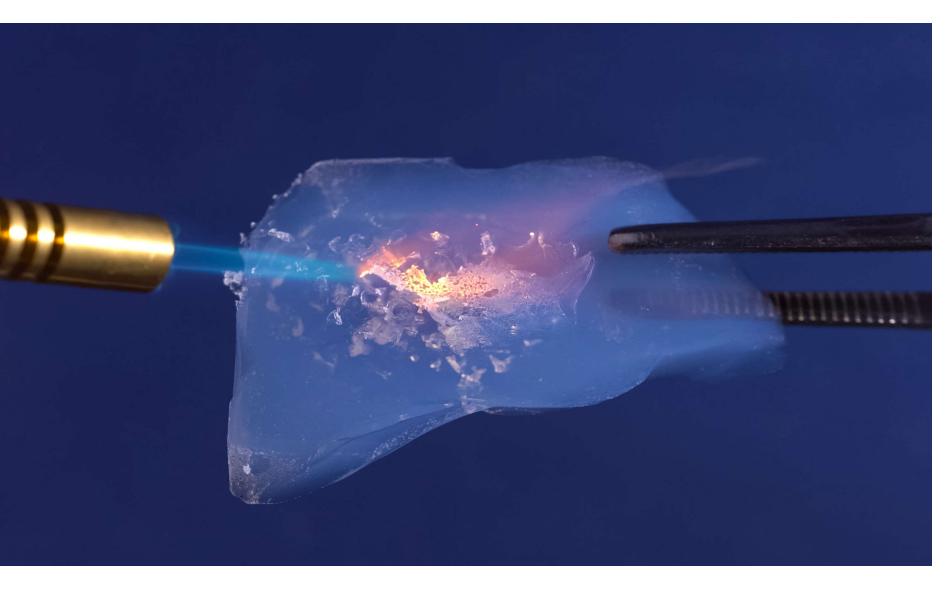
## Historie

- Gründung in USA
- Headquarter in Deutschland Heidenheim
- Niederlassungen








## Outlast Technologies GmbH

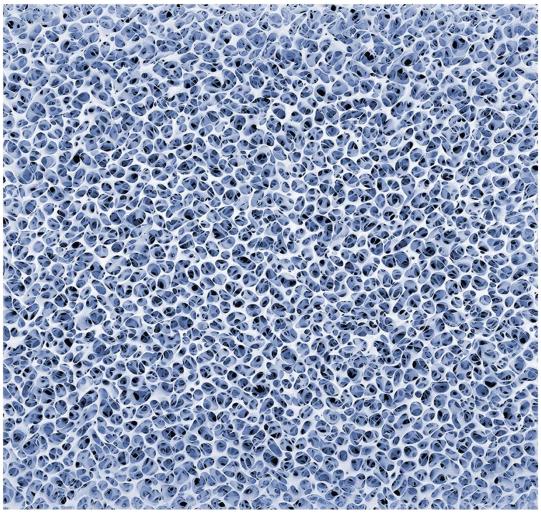
- 26 Mitarbeiter in Heidenheim, Honkong, USA, Italien
- Entwicklung, Labor, Vertrieb, Einkauf, Marketing, Buchhaltung
- Produktion mit Partnern weltweit
- Mit PCM (phase change materials) seit 30 Jahren am Markt





## **OUTLAST** AERSULATE®






AERSULATE® wird aus Aerogel hergestellt



## Aerogel Herstellung

- Erste Synthese 1931/32
- Heute gängige Methode zur Herstellung ist das Sol-Gel Verfahren









## Aerogel Eigenschaften

- hochporöser Festkörper, leichtester Feststoff der Welt
- Besteht zu 99% aus Luft
- Bestes, festes Isolationsmaterial der Welt  $\lambda = 0.017 \text{ W/(m*K)}$
- Schwer entflammbar
- Aerogel auf Basis Silikat (Sand)
- Extrem hydrophob
- Verwendung von Pulver unterschiedliche Partikelgrößen



## Ziel der Entwicklung bei Outlast

Dünne textile Materialien mit einer signifikanten Menge an Aerogel, außergewöhnlichen Eigenschaften bezüglich Isolationswerten für eine breiten Anwendungsbereich, die mit üblichen textilen Prozessen weiterverarbeitet werden können.



## Entwicklungen bei Outlast

- 1. Aerogel haltige Verbundsysteme
- 2. Aerogel Viskose Faser

• Alle Artikel sind zum Patent angemeldet



## Aerogel Verbundsysteme



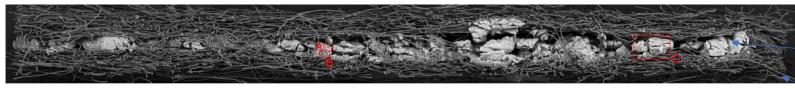
## Herausforderung

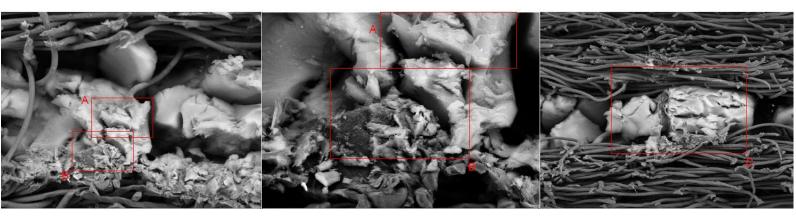
- Handling von "99% Luft"
- Haftung zum Textil
- Griffeigenschaften des Textils



## Verfahren

- Streuprozess von Aerogel/Klebstoff Compound
- Kontinuierlicher Nähprozess
- Ausrüstung





## Eigenschaften

- Sehr dünne Isolationsmaterialien (<2mm)
- 3 lagige Verbundsysteme 20-30% (Gewicht) Aerogel
- waschbar
- Niedrige λ-Werte, gute Atmungsaktivität, gute Isolationswerte
- Artikel auf Basis PES oder Aramid



## Aufbau





### 1. Lage Vlies

- 2. Lage Aerogel + Binder
- 3. Lage Vlies

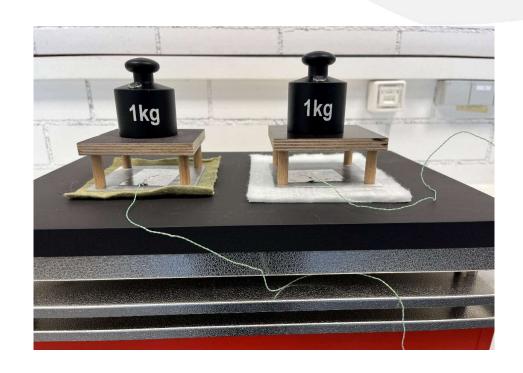


## Vergleich mit Blindwert ohne Aerogel

| Material (thickness 1 mm)    | Alambeta-Value (mK*m²/W) |  |
|------------------------------|--------------------------|--|
| Non-Woven without AERSULATE® | 20,4                     |  |
| Non-Woven with AERSULATE®    | 55,6                     |  |

Verbesserung der Isolation um über 100%



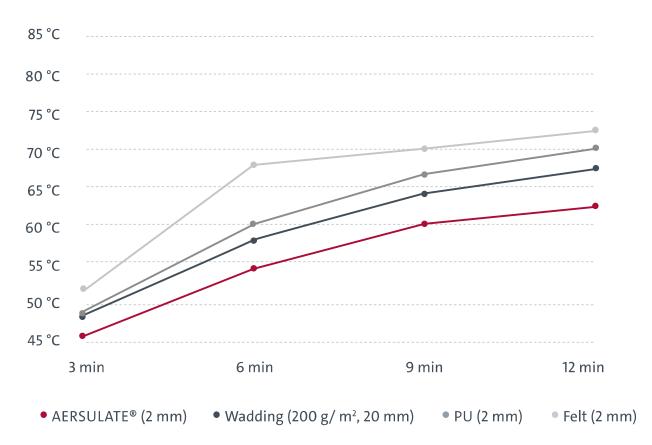

## Weitere Messungen

| <b>*</b> <sup>†</sup> ⁄ <sub>3</sub> |                   |                     |  |  |
|--------------------------------------|-------------------|---------------------|--|--|
|                                      | PES-<br>Aersulate | PES ohne<br>Aerogel |  |  |
| RCT<br>[m²'K/W¹]                     | 0,08              | 0,03                |  |  |
| RET<br>[m²¹Pa/W¹]                    | 7                 | 6                   |  |  |
| λ<br>[W/m˙K]                         | 0,024             | 0,080               |  |  |



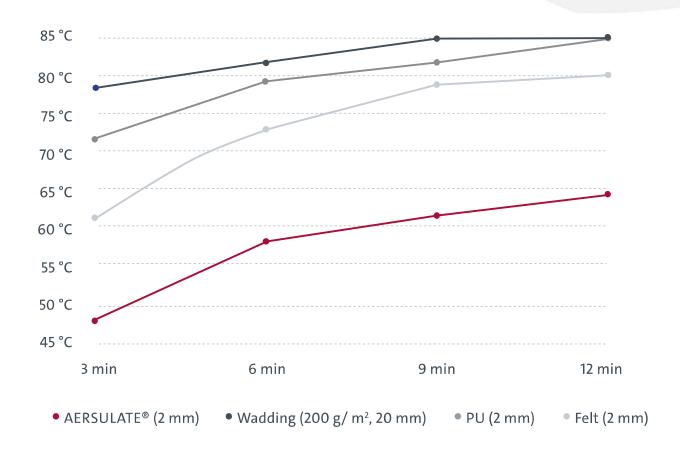
# Messungen unter Druck

Heizplatte: 100 °C -Jedes Muster (10\*10cm) Wird nach Bedarf beschwert



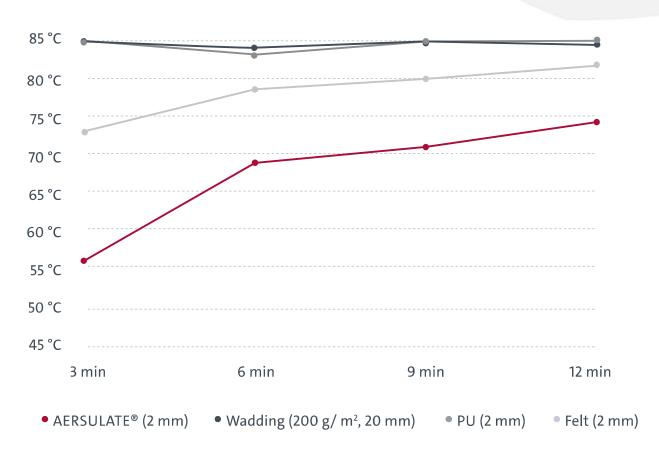

#### MEASUREMENTS AT 100 °C IN DRY VS. WET CONDITIONS

Heating plate 100 °C - without weight




#### Under dry conditions






### Under pressure (0,5 bar)





#### Under humid conditions





#### **MEASUREMENTS ACCORDING TO EN 469**

#### CONSTRUCTION:

AERSULATE®: lining

insulation layer (AERSULATE® Paonia, 1,1 mm, 185 g/m²)

membrane with non woven

outer fabric

**Reference:** lining

insulation layer (3D non woven, 1,2 mm 120  $g/m^2$ )

membrane with non woven

outer fabric

| Property – Fabric     | Test method 1)                                                  |
|-----------------------|-----------------------------------------------------------------|
| Limited flame spread* | EN ISO 15025:2016, method A surface ignition, flaming time 10 s |



### **RADIANT HEAT ACCORDING TO EN ISO 6942:2002**

 $Q0 = 80 \text{ KW/M}^2$ 

|                                                   | Norm Level 2 | Reference | AERSULATE® | exceeds the norm (%) |
|---------------------------------------------------|--------------|-----------|------------|----------------------|
| Radiant heat Heat transfer index RHTI24 (mean)    | 18 s         | 23,6s     | 27,7 s     | 54 %                 |
| Radiant heat Heat transfer index RHTI24-12 (mean) | 4 s          | 7,8s      | 9,1 s      | 128 %                |



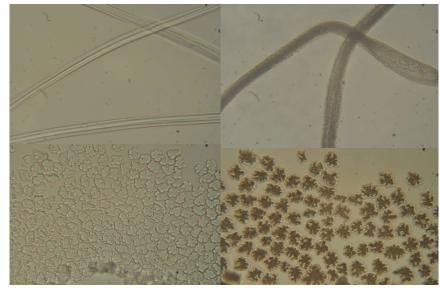
#### **CONTACT HEAT ACCORDING TO ISO 12127-1:2015**

CONTACT TEMPERATURE TC = 250 °C

|                                       | Norm Level 2 | Reference | AERSULATE® | exceeds the norm (%) |
|---------------------------------------|--------------|-----------|------------|----------------------|
| Contact heat Threshold time tt (mean) | 10 s         | 18s       | 25,4 s     | 154 %                |



## Ausblick

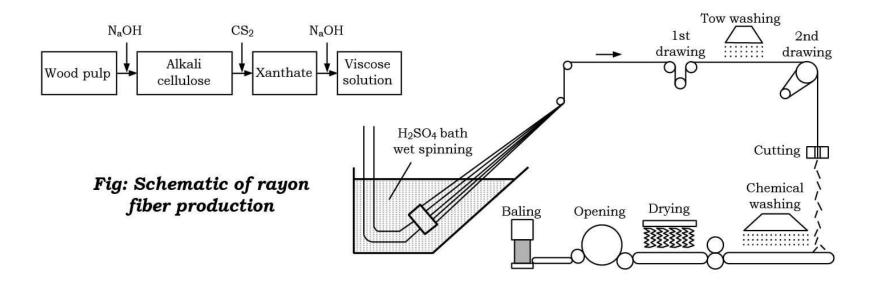

- Verfahrensoptimierung
- Zusatzfunktionen
- Supply chain



## Aerogel Viskose Fasern



## Aerogel Viskose Fasern




Faser ohne Aerogel

Faser mit Aerogel



## Herstellung





## Herausforderungen

- Stabilität Aerogel Pulver
- Stabilität Spinnmasse
- Partikelgröße
- Gleichmäßige Verteilung in der Spinnmasse
- Verstopfung der Filter



## Ergebnisse 7dtex Faser

|                                                       | Viskose | Aerogel Vikose |
|-------------------------------------------------------|---------|----------------|
| Faserfeinheit [dtex] (DIN EN ISO 1973)                | 7,3     | 7,1            |
| Faser Dichte [g/cm³]                                  | 1,5     | 1,1            |
| Mikroskopisch ermittelt                               |         |                |
| Anteil des Aerogel Partikel in Faser [%]              | 0       | 20             |
| Ermittelter Anteil von Aerogel in Faser nach Pyrolyse | 0       | 15,4           |
| [%]. (DIN 51903)                                      |         |                |
|                                                       |         |                |
| Faserfestigkeit [cN/tex] (DIN EN ISO 5079)            | 19,4    | 9,6            |
| Dehnung [%] (DIN EN ISO 5079)                         | 25      | 20             |
| LOI (ASTM D2863 Verfahren B)                          | 19,5    | 24,7           |



### Isolation einer Watte und eines Filzes

- 900gr Viskose Faser + 100gr PLA Schmelzfaser Dicke: 2,5 cm, Gewicht 250g/m<sup>2</sup>

|                                       | wadding of 90% Standard Viskose | wadding of 90% Aerogel Vikose |
|---------------------------------------|---------------------------------|-------------------------------|
| RCT [m <sup>2</sup> *K/W] (DIN EN ISO | 0,404                           | 0,543                         |
| 11092)                                |                                 |                               |
| TOG (BS 4745: 2005)                   | 2,85                            | 3,41                          |



## Einsatzmöglichkeiten

- Bettwaren
- Schlafsäcke
- Bekleidung
- Feuerwehr Thermosperre



## Ausblick

- dünnere Viskosefasern 3,3 detx erfolgreiche Versuche
- Fasern für Garnherstellung





from space to earth



#### **CONTACT OUTLAST**

Outlast Technologies GmbH In den Seewiesen 26/1 89520 Heidenheim/Brenz Germany

info@outlast.com Telefon: +49 . 7321 . 272 270 www.outlast.com